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Abstract Seasonal climate predictions are formulated from known present conditions and simulate the
near-term climate for approximately a year in the future. Recent efforts in seasonal climate prediction
include coupled general circulation model (CGCM) ensemble predictions, but other efforts have included
atmospheric general circulation model (AGCM) ensemble predictions that are forced by time-varying sea
surface temperatures (SSTs). CGCMs and AGCMs have differences in the way surface energy fluxes are
simulated, which may lead to differences in skill and predictability. Concerning model biases, forecasted SSTs
have errors compared to observed SSTs, which may also affect skill and predictability. This manuscript
focuses on the role of the ocean in climate predictions and includes the influences of ocean-atmosphere
coupling and SST errors on skill and predictability. We perform a series of prediction experiments comparing
coupled and uncoupled Community Climate System Model version 4.0 (CCSM4) predictions and forecasted
versus observed SSTs to determine which is the leading cause for differences in skill and predictability.
Overall, prediction skill and predictability are only weakly influenced by ocean-atmosphere coupling, with the
exception of the western Pacific, while errors in forecasted SSTs significantly impact skill and predictability.
Comparatively, SST errors lead to more significant and robust differences in prediction skill and predictability
versus inconsistencies in ocean-atmosphere coupling.

1. Introduction

Seasonal climate predictions are composed of model simulations of the near-term climate for approximately
a year in the future. These predictions are based on known present conditions and simulate anticipated
near-term climate information for the upcoming months and seasons. On the seasonal timescale, sea surface
temperatures (SSTs) are a very important element, as predictions are predominantly influenced by slowly
evolving surface boundary conditions including, but not limited to, SSTs [Shukla, 1998; Koster and Suarez,
2003; Paolino et al., 2011; Kirtman et al., 2014; among others].

Recent efforts in seasonal climate prediction utilize coupled general circulation models (CGCMs) initialized
from observed states in the ocean, land, and atmosphere domains, such as those included in the North
American Multi-Model Ensemble (NMME) [see, for example, Kirtman and Min, 2009; Paolino et al., 2011;
Kirtman et al., 2014]. NMME predictions have been discussed in numerous studies. For example, Becker
et al. [2014] considered overall prediction and predictability, Infanti and Kirtman [2013, 2015] assessed predic-
tion skill and model response to tropical Pacific forcing over North America, and similar assessments have
been preformed over Africa [Shukla et al., 2016] and China [Ma et al., 2016], among others. In other efforts,
atmospheric general circulation models (AGCMs) with prescribed, time-varying, forecasted SST taken from
coupled simulations or persisted SSTs are used to formulate climate predictions [Bengtsson et al., 1993;
Goddard and Mason, 2002; Kumar et al., 2008] or for predictability or potential prediction studies using
observed SSTs [e.g., Graham et al., 2000]. Atmospheric teleconnections or oceanic heat fluxes may be misre-
presented in CGCM and AGCM forecasts due to errors in SSTs, thus leading to errors in associated land-based
precipitation or temperature forecasts. Differences in ocean-atmosphere coupling in AGCM and CGCM pre-
dictions can lead to differences in predictions of midlatitude oceanic surface energy fluxes, also potentially
influencing predictions over land.

Biases in the oceanic and atmospheric components of climate models are common and are principally due to
misrepresentation of or failure to resolve physical processes, especially in the tropics due to feedbacks in the
region [Wang et al., 2014]. For example, the current generation of coupled climate models suffers from an
excessive cold tongue in the equatorial Pacific and a double intertropical convergence zone [Mechoso
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et al., 1995; de Szoeke and Xie, 2008; Li and Xie, 2013]. The cold tongue errors can cause biases in precipitation
and winds, and these biases are amplified by ocean-atmosphere interaction in coupled models in compari-
son to atmosphere-only simulations with observed prescribed SSTs. Biases due to the double intertropical
convergence zone can be associated with excessive downward solar radiation in atmospheric models
[de Szoeke and Xie, 2008; Li and Xie, 2013]. El Niño–Southern Oscillation (ENSO) performance is also biased
in terms of amplitude, location, and timing of ENSO events, which are tied to atmospheric feedbacks, speci-
fically the Bjerknes and heat flux feedbacks (particularly short wave) [Bellenger et al., 2014]. The tropical
Atlantic also suffers from biases in SSTs related to the meridional mode and in the equatorial cold tongue
region, and the interannual variability of SSTs in the region can impact remote precipitation [Richter et al.,
2014, and references therein]. These biases can impact ENSO variability due to both coupled process errors
and SST biases [Richter et al., 2014; Sasaki et al., 2014]. As SST biases can influence the atmospheric model
component (including teleconnections) and, in turn, coupled processes can add to SST biases, we focus
our efforts on two areas. The first is the influence of SST biases on prediction skill and predictability, and
the second is the differences in ocean-atmosphere coupling in CGCM and AGCM predictions.

Due to the importance of SSTs, one of our main considerations is the influence of SST errors on hindcast skill
and predictability in Community Climate System Model version 4.0 (CCSM4). SST biases or errors can impact
both the skill of predictions and remote trends. Foreknowledge or skillful predictions of SST anomalies can
add to predictability or prediction skill in regions with strong associations [Shukla, 1998; Livezey and
Timofeyeva, 2008]. For example, SST anomalies, such as those associated with ENSO, can stimulate atmo-
spheric teleconnections that impact North American climate variability [Ropelewski and Halpert 1986;
Trenberth et al., 1998]. Using historical CMIP5 models, Shin and Sardeshmukh [2011] found that coupled mod-
els have biases in tropical SSTs, which impact remote trends. In a climate prediction setting, Shukla [1998]
showed that during the JFM1998 El Niño event, extratropical circulation was predicted with some skill even
at a 6 month lead but would have been more accurate if the forecasted SSTs were closer to observed, indi-
cating that SST biases impacted the prediction. In some regions, such as the southeastern U.S., prediction skill
is highly sensitive to changes in SST, and skill can suffer due to errors in predicted SSTs [Infanti and Kirtman,
2015]. In contrast, and when using persisted versus observed prescribed SSTs, Goddard and Mason [2002]
found that in regions where skill is highly tied to El Niño, the skill was similar for both simulations but that
SST errors led to losses in prediction skill in other regions.

A second motivation for this manuscript is the differences in ocean-atmosphere coupling in CGCM versus
AGCM predictions. We focus on large-scale fields affecting North American climate variability. Ocean-
atmosphere coupling, or lack of ocean-atmosphere coupling in the case of an AGCM prediction, may have
some bearing on model performance and therefore prediction skill due to atmospheric feedbacks on SSTs
and any resulting changes in global circulation. Wintertime North American climate variability is largely
and principally influenced by the tropical Pacific through ENSO variations [Ropelewski and Halpert, 1986,
1987; Trenberth et al., 1998; Mo and Schemm, 2008a, 2008b; among many others]. However, other studies
have suggested that midlatitude SSTs may play a role, particularly on seasonal timescales, such as the linkage
of the North Pacific Ocean and geopotential height over North America, the Pacific North American (PNA)
pattern, or impacts from the tropical Atlantic [Palmer and Zhaobo, 1985; Frankignoul, 1985; Barsugli and
Battisti, 1998; Saravanan, 1998; Straus and Shukla, 2002; Wu and Kirtman, 2007; Sasaki et al., 2014; among
others]. The use of a AGCM can lead to inconsistencies in surface energy fluxes and thus inaccuracies in
simulated climate variability [Barsugli and Battisti, 1998]. However, CGCMs are not without their deficiencies.
They can also produce unrealistic air-sea fluxes due to biases in SSTs or winds [Yu and Mechoso, 1999]. It is
therefore important to characterize influence of ocean-atmosphere coupling on skill and predictability in a
prediction setting.

In addition to characterizing ocean-atmosphere coupling influences on skill and predictability in a prediction
setting, comparison of CGCM and AGCM predictions is also useful to determine if there are any expected skill
or predictability differences. Despite the potential shortcomings of an AGCM prediction system, it has been a
practical choice for prediction studies for quite some time [see, for example, Bengtsson et al., 1993]. Further
studies such as high-resolution predictions [e.g., Li and Misra, 2014; Misra et al., 2014], or bias correcting
predicted SSTs [e.g., Kumar et al., 2008] are very possible in this type of prediction system, and thus any dif-
ferences between the two simulations are important to consider. Previous studies have investigated CGCM
and AGCM simulations in both free-running and prediction simulations. In a comparison of the Community
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Climate SystemModel version 3 (CCSM3) CGCM and the Community Atmosphere Model version 3 AGCM, the
atmospheric responses to SST forcing as well as weather noise statistics were similar [Chen et al., 2012].
Conversely, other studies found that AGCM performance strongly depended on whether or not SST forcing
was dominant, for example, in the tropical Pacific versus midlatitudes, and speculate that this could affect
prediction skill [Wu and Kirtman, 2004; Wu et al., 2006; Wu and Kirtman, 2007]. In a prediction framework,
using coupled and uncoupled experiments in the Climate Forecast System (CFS), Kumar et al. [2008] found
that strong atmospheric responses to SSTs were sufficient enough to show similar responses in winter pre-
dictions. However, Kumar et al. [2008] and Zhou et al. [2012] also state that in other seasons/timescales,
ocean-atmosphere coupling may be more important. CCSM4 predictions, in the framework of CGCM and
AGCM predictions, have not yet been studied.

We focus on the role of the ocean in seasonal climate predictions of North American land-based precipitation
and temperature. We aim to study the relative importance of errors in SSTs (observed versus forecasted) and
differences in ocean-atmosphere coupling in predictions made with a CGCM compared to an AGCM. This
study considers CGCM and AGCM prediction methods using CCSM4, of which fully coupled hindcasts are
included in NMME [Kirtman et al., 2014]. Given the potential impacts to skill due SSTs and/or ocean-
atmosphere coupling differences in CGCM compared to AGCM predictions, a comparison of deterministic
skill, probabilistic skill, and predictability is shown in a variety of CCSM4 simulations. These simulations
include CCSM4 fully coupled hindcasts, hindcasts with SSTs prescribed from predictions, and “potential pre-
dictability” hindcasts with SSTs prescribed from observations (AGCM hindcasts). Regionally, our focus is on
North America and the Pacific/Atlantic Oceans. This manuscript is organized as follows: Section 2 details
the relevant modeling experiments and analysis methods, section 3 includes results, section 4 includes the
discussion, and section 5 the concluding remarks.

2. Methods
2.1. Modeling Experiments

The goal of this manuscript is to compare predictions with differing SSTs (observed versus forecasted) and
with differing ocean-atmosphere coupling (CGCM versus AGCM predictions). The CGCM predictions are per-
formed in the fully coupled CCSM4 [Gent et al., 2011] and are those included in NMME [Kirtman et al., 2014].
AGCM predictions are performed in the standalone atmospheric model of CCSM4, the Community
Atmosphere Model version 4 (CAM4), which is coupled to the Community Land Model version 4 (CLM4).
Both CGCM and AGCM predictions use initial states taken from the Climate Forecast System Reanalysis
(CFSR) [Saha et al., 2010], approximating observations. Prescribed SST data used in the AGCM predictions
are detailed below. Both CCSM4 AGCM and CGCM predictions are identical in hindcast initialization and
model setup, but SSTs are prescribed in the CCSM4 AGCM prediction experiments (no bias correction is
performed on prescribed SSTs). Experiments and relevant notation follow.

1. FC: Fully coupled CCSM4 hindcasts. Ten ensemble members generated from observed atmosphere, land,
and ocean initial states for a period of 1982–2009. More information about these fully coupled hindcasts
can be found in Paolino et al. [2011] and Kirtman et al. [2014].

2. CAM4_OBS: CAM4 “hindcasts”with observed, prescribed SST [Rayner et al., 2003]. Ten ensemble members
generated from observed atmosphere and land initial states for a period of 1982–2009. Hindcasts are initi-
alized every December Lead times up to 6 months are considered.

3. CAM4_FC: CAM4 hindcasts with SSTs prescribed from the first to tenth ensemble member FC predictions,
where CAM4_FC ensemble member 1 has prescribed SST consistent with FC ensemble member 1,
CAM4_FC ensemble member 2 has prescribed SST consistent with FC ensemble member 2, and so on
to ensemble member 10. Ensemble generation, initialization, and lead times as above.

This experimental design is such that comparing CAM4_OBS and CAM4_FC shows any differences expected if
SSTs could be perfectly predicted; however, the experiments have energetic inconsistencies as SSTs are pre-
scribed. As CAM4_OBS uses observed, prescribed SSTs, it is more aptly referred to as a “potential prediction”
experiment; however, we refer to it as a prediction in the interest of brevity. Systematic error between FC pre-
dicted SSTs and observations is shown in Figure 1, and we see that SST error increases as lead time increases
(see Figures 1a–1d) and that there is a cold bias over much of the tropical ocean(s). In comparing CAM4_FC
and FC experiments, we consider the impact of ocean-atmosphere coupling on predictions, which have the
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same SSTs but differing ocean-atmosphere coupling. As the SSTs are prescribed in the CAM4_FC experiment,
this experiment isolates the SST-forced component of atmospheric anomalies. However, we note that the
prescribed SSTs include some coupling information, as they are output from the coupled model. This
experiment is very similar to Wu et al. [2006] but utilizes forecasted SSTs.

Initialization of CCSM4 is similar to CCSM3 [Paolino et al., 2011], and we briefly discuss the procedure for initi-
alization of CAM4 and CLM4. All initial data are taken from the CFSR [Saha et al., 2010]. CAM4 is initialized
from multilevel fields of temperature, zonal and meridional winds, specific humidity, cloud liquid water
content, cloud ice water content, and cloud fraction and from single level fields of surface pressure, surface
geopotential, surface temperature, and planetary boundary layer height. The data are regridded to the
0.9 × 1.25 degree grid and 26-hybrid sigma pressure levels used by CAM4.

CLM4 is initialized from daily fields of soil moisture, soil temperature, snow depth, snow temperature, vege-
tation temperature, and canopy moisture. These fields are normalized by their standard deviations and com-
bined with the mean and standard deviation of soil climatology from 30 years of CLM4 output data, sampled
after 100 year spin-up. Initial data south of 60S are set to model climatology. As observed data do not exist,
vegetation temperature and canopy moisture initial fields are produced from a 7 day CCSM4 spin-up forecast
where CAM is initialized as above to produce fields influenced by the initial atmospheric state.

Daily data from the end of the prior month are used to initialize ensemble members. A hindcast initialized on
1 December uses CFSR data from 26 November 00Z to initialize ensemble member 1, data from 26 November
12Z to initialize ensemblemember 2, and so on. We refer to the first season after initialization as seasonal lead
1 (December initialized hindcast predicting DJF), second season as seasonal lead 2 (December initialized
hindcast predicting JFM), etc. In CGCM predictions, SSTs are freely evolving and initialized from observed
ocean states. In AGCM predictions, SSTs are prescribed. Ocean-atmosphere coupling frequency in FC hind-
casts is once per day; thus, CAM4_FC experiments are forced by daily SST output as in Chen et al. [2012].
CAM4_OBS experiments are forced by monthly SSTs as is typical in observed SST experiments. Although
we use daily SST in CAM4_FC experiments for consistency with the coupling frequency of FC hindcasts, we
saw only small differences when monthly SSTs were used, and the errors in FC SSTs are large compared to
the error when using monthly as opposed to daily observed SSTs.

2.2. Methods of Analysis

Observational estimates considered are the Climate Prediction Center Merged Analysis of Precipitation
(CMAP) [Xie and Arkin, 1997] and the Global Historical Climatology Network/Climate Anomaly Monitoring
System 2 m temperature (T2m) [Fan and van den Dool, 2008]. Model anomalies are calculated with respect

Figure 1. Systematic error of FC ensemble mean predicted SSTs minus observed (NCDC) SSTs.
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to model climatology and observed anomalies with respect to observed climatology. The hindcast period
considered is 1982–2009. The ensemble mean is calculated by averaging all 10 ensemble members
without weighting [e.g., Infanti and Kirtman, 2013].

Prediction skill is determined using anomaly correlation (AC; deterministic) and rank probability skill score
(RPSS; probabilistic) as using both methods gives a more comprehensive assessment of prediction skill
[Kirtman, 2003]. AC is a deterministic measure of skill comparing the predicted ensemble mean to observa-
tions [e.g., Kirtman and Min, 2009;Wilks, 2011; Infanti and Kirtman, 2013, 2015]. RPSS is a probabilistic measure
of skill based on comparison of the cumulative squared probability error of the prediction versus that of a
reference forecast for three tercile categories [e.g.,Mason, 2004;Weigel et al., 2007;Wilks, 2011]. We also con-
sider estimates of “perfect model” predictability, or the skill of the simulation in predicting itself; i.e., there is
no systematic error or biases with respect to observations. This can show regions or seasons in which we
might expect a given variable to be predictable [Boer, 2004; Cheng et al., 2011]. We retain one ensemble
member as “truth” and estimate predictability based on the remaining nine ensemble members [e.g.,
Infanti and Kirtman, 2016].

Our interests lie in comparing FC to CAM4_FC and in comparing CAM4_OBS to CAM4_FC to determine
differences in skill and predictability due to ocean-atmosphere coupling and SST errors. For AC, we use
Fisher’s R-to-Z transformation to transform the correlations to approximately normal [Wilks, 2011; Infanti
and Kirtman, 2013; DelSole and Tippett, 2014; Infanti and Kirtman, 2016] and then difference the normalized
ACs. RPSS comparison is calculated using CAM4_FC RPSS as the reference forecast versus FC and CAM4_OBS.

3. Results
3.1. Comparison of Skill

We consider two representations of skill, AC (deterministic) and RPSS (probabilistic). AC and RPSS are calcu-
lated with respect to observations for precipitation and temperature; however, we are interested in a compar-
ison of skill, or regions where FC or CAM4_OBS skill differs from CAM4_FC. Comparison of FC to CAM4_FC
indicates regions where skill increase or decrease is due to ocean-atmosphere coupling differences.
Comparison of CAM4_OBS to CAM4_FC indicates regions where skill increase or decrease is due to SST errors.

Figure 2 shows the difference in AC for FC minus CAM4_FC (Figures 2a–2d) and for CAM4_OBS minus
CAM4_FC (Figures 2e–2h) for precipitation. All ACs have been converted to approximately normal using
Fisher’s R-to-Z transformation in order to easily subtract and assign significance levels (significance of
difference at 95% confidence level shown); thus, this figure indicates regions in which FC and CAM4_OBS sig-
nificantly differ from CAM4_FC. While there are slight differences in skill between FC and CAM4_FC
(Figures 2a–2d), these differences are rarely significant, even over the midlatitude oceans where we may
expect differences in ocean-atmosphere coupling in AGCM versus CGCM experiments to matter greatly

Figure 2. Transformed (using Fisher’s R-to-Z transformation) difference in precipitation anomaly correlation (AC). (a–d) FC � CAM4_FC December initialized hind-
casts predicting DJF � MAM. (e–h) CAM4_OBS � CAM4_FC December initialized hindcasts predicting DJF � MAM. Red (blue) shading indicates regions where FC
or CAM4_OBS has stronger (weaker) skill than CAM4_FC. Contours indicate significance of difference at 95% confidence level. Anomaly correlation is calculated
with respect to observed (CMAP) precipitation.
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[Wu et al., 2006; Wu and Kirtman, 2007]. However, differences are mainly positive, and we do not find any
evidence of ocean-atmosphere coupling causing significant skill decrease. Land based 2 m temperature
results show similarly insignificant differences, but the differences are larger over land than what is seen
for precipitation (Figure 3). These findings suggest that in a realistic prediction setting, ocean-atmosphere
coupling inconsistencies between CGCM and AGCM experiments do not have a significant effect on
deterministic skill, given the current initialization strategy and the specific model in question. Nevertheless,
the influence of ocean-atmosphere coupling is mainly positive.

On the other hand, there is a significant increase in precipitation skill when comparing CAM4_OBS and
CAM4_FC that increases with lead time, particularly in the tropical Pacific, tropical Atlantic, and off the coast
of the northwestern U.S. in the region of the Aleutian Low (Figures 2e–2h). Land-based 2 m temperature
differences are shown in Figures 3e–3h, and we also find increased skill, although it is not significant. Thus,
errors in SSTs have a significant negative effect on precipitation skill in the tropical Pacific and negatively
impact precipitation and 2 m temperature skill over the midlatitudes/land-based regions, more so at long
leads. Large SST biases exist in some regions, for example, near Central America or the eastern coast of
South America, see Figure 1, although much of the tropical ocean region shows some bias. Although
the bias in the tropical oceans is weaker, biases could cause modulation of associated tropical-extratropical
teleconnections, thus impacting skill of remote regions. This relationship between biases and skill is dis-
cussed further in section 4.2.

We also consider probabilistic skill comparison measured with RPSS. Typically, RPSS is calculated for three ter-
ciles (lower, middle, and upper) and compared to climatology, or equally probable outcomes in each cate-
gory. To facilitate comparison between experiments, we use CAM4_FC probabilities as a reference in place
of climatology. RPSS comparison figures are very similar to the AC difference figures in interpretation.
Probabilistic results are consistent with the deterministic assessment; thus, we only show RPSS comparison
for precipitation in Figure 4. We again find that there is very little difference between FC and CAM4_FC rela-
tive to CAM4_OBS and CAM4_FC, which shows larger differences. This indicates that any energetic inconsis-
tencies in CGCM versus AGCM predictions do not lead to significant difference in deterministic or
probabilistic skill, but errors in SSTs contribute significantly to skill decrease, particularly in the tropical Pacific.

3.2. Comparison of Predictability

One might assume that the lack of significant difference in skill between FC and CAM4_FC is due to overall
model errors. Predictability, as considered here, is the “ability to predict” a given variable in a perfect model
prediction setting [e.g., Boer, 2004] and estimates the prediction skill if hindcasts were without systematic
error or bias [e.g., Cheng et al., 2011]. Model predictability is an estimate, as models can overestimate predict-
ability relative to nature [DelSole, 2004, 2005] but can be used as guidance for expected skill given low or no
forecast errors.Wu and Kirtman [2007] showed that in an idealized setting, energetic inconsistencies between
CGCM and AGCM simulations led to significant differences over midlatitude oceans, suggesting that systema-
tic error may be playing a role in the skill results presented above. As predictability minimizes error, we can
determine if model errors are the cause of the similarities between the experiments. CAM4_OBS can be seen

Figure 3. As in Figure 2 but for 2 m temperature.
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as a “potential predictability” experiment given perfectly predicted SSTs, but there may still be model errors
related to oceanic fluxes, etc.; thus, comparison is still warranted. Predictability is defined specifically with
respect to CCSM4 and estimates may differ for other models.

Assessment of deterministic predictability is similar to Figure 2, but we retain one ensemble member as
“truth” in place of observations and the remaining nine ensemble members form the ensemble mean. To
avoid sampling errors, we repeat this calculation for each possible combination of one ensemble member
and the mean of the remaining nine. The average of all possible combinations of ensemble members is
shown, and stippling indicates robustness of predictability increase of the FC or CAM4_OBS simulation versus
CAM4_FC (7/10 ensemble combinations in agreement that the difference is positive). Deterministic predict-
ability differences for precipitation are shown in Figure 5 (2 m temperature results not shown).

There are few land-based regions in which FC has increased predictability compared to CAM4_FC
(Figures 5a–5d). However, the difference in predictability is generally positive over the oceans, and there is
a sizable and robust predictability increase in the western Pacific in the FC predictions compared to
CAM4_FC predictions. This region was also highlighted by Wu and Kirtman [2007]. The western Pacific is an
important source for the PNA pattern reaching North America [e.g., Lau and Nath, 1996] which could lead
to teleconnection impacts. The equatorial Atlantic also shows some robust predictability increase in the FC
simulation, indicating that ocean-atmosphere coupling adds to predictability in the region, likely due to bet-
ter representation of ocean-atmosphere feedbacks [e.g., Richter et al., 2014]. In turn, due to links to ENSO [e.g.,

Figure 5. Deterministic precipitation predictability comparison using anomaly correlation of all possible combinations of nine ensemble members predicting the
remaining. (a–d) FC � CAM4_FC December initialized hindcasts predicting DJF � MAM. (e–h) CAM4_OBS � CAM4_FC December initialized hindcasts predicting
DJF � MAM. Red (blue) shading indicates regions where FC or CAM4_OBS has stronger (weaker) predictability than CAM4_FC. Stippling indicates “robustness” of
deterministic predictability, in which 7/10 ensemble combinations are in agreement that the difference is positive.

Figure 4. Rank probability skill score (RPSS). (a–d) FC � CAM4_FC December initialized hindcasts predicting DJF � MAM. (e–h) CAM4_OBS � CAM4_FC December
initialized hindcasts predicting DJF � MAM. Red (blue) shading indicates regions where FC or CAM4_OBS has stronger (weaker) skill than CAM4_FC. RPSS is
calculated with respect to observed (CMAP) precipitation.
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Handoh et al., 2006], this enhanced Atlantic predictability may have some bearing on teleconnection pat-
terns. Two-meter temperature (not shown) again shows few regions of robust predictability increase when
comparing FC to CAM4_FC.

In comparison, there are large and robust differences in predictability when observed SST are used in place of
forecasted SSTs (Figures 5e–5h), which are seen over the tropical Pacific, some midlatitude oceanic regions,
and in the southern tier of the U.S. This is more pronounced at longer leads as SST errors increase. Two-meter
temperature predictability results are similar to prediction skill, though there are some regions of robust
predictability increase at longer leads (not shown). We also consider probabilistic assessment using RPSS,
computed similarly to AC predictability and retaining one ensemblemember as truth. As results are very simi-
lar to deterministic predictability, we do not show them here; however, the similarity of deterministic and
probabilistic predictability results further supports the above conclusions.

Overall, CGCM versus AGCM prediction strategies do not lead to (comparatively) robust differences in pre-
dictability excepting select regions, specifically the western Pacific, for precipitation. However, FC predictabil-
ity is generally increased over CAM4_FC predictability. As the predictability results minimizemodel errors, the
similarity in skill between FC and CAM4_FC is not due to the presence of model errors. The most pronounced
difference in predictability is when observed SSTs are included in the forecast, similar to the skill assessment
in section 3.1. The remaining section discusses potential reasons why there are only a small difference in
coupled versus uncoupled predictions and a comparatively larger difference when observed SSTs are used.

Figure 6. Latent heat flux-SST and latent heat flux-SST tendency correlation for (a–d) DJF and (e–h) MAM. Calculation is
based on the ensemble mean. Simultaneous correlation for DJF (MAM) is shown in Figures 6a and 6b (Figures 6e and
6f). Tendency correlation for DJF (MAM) is shown in Figures 6c and 6d (Figures 6g and 6h). CAM4_FC is shown on the left
and FC shown on the right.
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4. Discussion

In section 3, we found that the largest and most significant skill differences existed for tropical Pacific
precipitation when observed versus forecasted SST was prescribed. In the extratropics, skill differences were
not significant, but prescribing observed SSTs still led to more skill. Conversely, energetic inconsistencies over
the oceans in AGCM versus CGCM hindcasts did not lead to any significant difference in skill. Predictability
results are similar, though with some predictability difference in the western Pacific. This section discusses
the potential reasons for why there is little difference in skill and predictability for CGCM versus AGCM
predictions, and larger differences when accurate SSTs are used.

4.1. CGCM Versus AGCM Predictions

Energetics, more specifically the transfer (or flux) of latent heat into or out of the atmosphere, is an important
component of climate simulations as it is the driving force of anomalies. For example, specific to CCSM4,
excessive trade winds in the atmospheric model lead to an erroneously large loss in latent heat flux, weak
equatorial zonal winds lead to a warm SST bias in the southeast Atlantic, and insufficient low-level clouds lead
to erroneously high SSTs, among other issues [Grodsky et al., 2012]. By comparing the rainfall-SST (or
evaporation-SST) simultaneous correlation to the rainfall-SST (or evaporation-SST) tendency correlation from
CGCM and AGCM simulations, one can determine if ocean forcing of the atmosphere is dominant or if atmo-
sphere forcing of the ocean is dominant [Wu et al., 2006; Wu and Kirtman, 2007]. The atmosphere responds
very quickly to oceanic forcing; thus, if the simultaneous rainfall-SST correlation is large and positive compared
to a weak rainfall-SST tendency correlation, ocean forcing of the atmosphere is dominant. Conversely, if the
rainfall-SST tendency correlation is strong and negative compared to weak simultaneous correlation, this indi-
cates that atmosphere forcing of ocean anomalies is dominant. The broad conclusions from Wu et al. [2006],
Wu and Kirtman [2007] using idealized CCSM3 simulations are that ocean forcing is dominant in the tropics
and atmosphere forcing is dominant in the midlatitudes. We investigate this in CCSM4 predictions.

While rainfall can be used as a proxy for heat transfer in the tropics, this does not specifically hold true for the
extratropics. We thus show the latent heat flux-SST simultaneous and tendency correlations for CAM4_FC and
FC prediction experiments in Figure 6. Correlations are calculated using the ensemble mean, and as taking
the ensemble mean minimizes noise, this represents the signal component of the coupling. The mean of
all possible simultaneous and tendency correlations for each ensemble member is also computed, shown in
Figure 7. This represents the noise component of the coupling. Finally, we include results from a fully coupled
control run (no initialization) to determine the expected character of coupling outside of a prediction setting
(Figure 8). Figure 8 is thus very similar to [Wu et al., 2006; Wu and Kirtman, 2007], but for CCSM4.

The signal and noise definitions used in this manuscript follow roughly from Straus and Shukla [2002].
External variability is the variability of the ensemble mean, corresponding to the predictable component,
or signal. Internal variability is the variability about the ensemble mean, which can be due to nonlinear
dynamics and is the unpredictable component, or noise. Here we simply define the signal component of
the coupling based on the ensemble mean, and the noise component based on calculation for each ensem-
ble member and subsequent averaging. The FC control simulation is a free-running, multidecade simulation
completed in CCSM4 that utilizes year 2000 forcing but does not simulate any particular observed period. The
simulation was run for approximately 300 years, and we use a sample size of 50 years.

Figure 6 indicates that for the signal component of coupling (i.e., when the coupling is assessed based on the
ensemble mean and noise is reduced), the response is very similar in both the FC and the CAM4_FC predic-
tions. For example, when comparing the DJF latent heat flux-SST simultaneous and tendency correlations for
CAM4_FC and FC simulations (Figures 6a–6d), the relative sizes of the simultaneous and tendency correla-
tions are similar between the two simulations. This result differs from the control simulation in Figure 8, which
clearly shows stronger latent heat flux-SST tendency correlation (Figures 8c and 8d) in midlatitudes com-
pared to the simultaneous correlation (Figures 8a and 8b). There are larger differences when we consider
the noise component of the coupling (i.e., when the coupling is assessed for each ensemble member indivi-
dually and subsequently averaged; thus, the noise is not reduced as in the ensemble mean; Figure 7) and
results more closely match the control simulation. For example, consider Figures 7b and 7d, which show
the noise component of the coupling for the FC simulation, in contrast to the signal component, the noise
component shows the expected larger ocean forcing of atmosphere anomalies in the midlatitudes.
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Figure 8. (a and b) Latent heat flux-SST and (c and d) latent heat flux-SST tendency correlation for DJF andMAM for 50 years
of FC_CTRL.

Figure 7. As in Figure 6, but based on computation of these values for each ensemble member individually and subse-
quent averaging.
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Conversely, the CAM4_FC simulation shows weak ocean forcing of atmosphere anomalies in the midlatitudes
(for example, Figures 7a and 7c). However, as expected, all simulations are similar in the tropical Pacific, where
there is strong ocean forcing of atmosphere anomalies.

Wu and Kirtman [2005] showed that coupled simulations may have lower atmospheric variability, leading to a
reduction in both noise and total variance, compared to uncoupled simulations. These authors explain that in
FC experiments, ocean-atmosphere coupling introduces a “damping” affect where SST forced changes also
act to reduce SST forcing, in turn weakening atmospheric anomalies and persistence. By design, this damping
feedback is suppressed in any prescribed SST experiment, allowing SST-forced atmospheric anomalies to
persist for a longer time, enhancing atmospheric variability. Although we find differences in the noise
component of the coupling in the CCSM4 predictions, this does not lead to significant differences in skill
or predictability (excepting select regions of precipitation predictability, such as the western Pacific).

The tropical Pacific is typically cited as the main contributor to wintertime North American climate variability;
however, as noted in the introduction, many references have pointed to some influence of midlatitude SST
coupling on winter seasonal timescales. While we find some differences in the noise component of the
coupling in the two models in the midlatitudes, this has minimal bearing on the skill or predictability of
precipitation and 2 m temperature. As the coupling associated with the climate signal is very similar between
the two simulations, we expect that the resulting climate response will be similar as well. Prediction skill and
predictability is dominated by coupling associated with the signal, and the differences in noise in the midla-
titudes do not significantly contribute to differences in skill or predictability. While not specifically tested
here, it is possible that strong tropical Pacific forcing is overwhelming the midlatitude response, although
we found similar results for both DJF and MAM. We hope to test this with the addition of more initial months
and seasons.

An important distinction in the FC versus CAM4_FC comparison is that we are comparing two predictions
with the same SSTs, thus the influence of coupling irrespective of any bias between the two SST fields.
However, the forecasted SSTs have errors compared to observations. We further assess ocean-atmosphere
coupling with the inclusion of SST bias in Figure 9, which shows the ensemble mean systematic latent heat
flux difference between FC and CAM4_FC simulations (Figures 9a and 9b) and between CAM4_OBS and
CAM4_FC (Figures 9c and 9d) for DJF and MAM. There are weak differences in latent heat flux between the
FC and CAM4_FC simulations in the midlatitude Pacific and Atlantic oceans, reflecting some small difference
in the character of ocean-atmosphere coupling. However, Figure 9 indicates that should SSTs be more
accurate (possibly through better simulation of relevant energetics), this could strongly influence latent heat-
ing and the resulting atmospheric fields. Thus, while using the same SSTs but differing ocean-atmosphere

Figure 9. Ensemblemean latent heat flux climatology differences for (a and b) FCminus CAM4_FC (panels a and b) and (c and d) CAM4_OBSminus FC. DJF shown on
the left and MAM on the right.
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coupling does not lead to a (comparatively) large impact on skill or predictability of precipitation or 2 m
temperature, it cannot be discounted as a source of potential predictability for the SSTs themselves. This
subtlety is not directly tested in this manuscript; however, the remaining section discusses the reasoning
why accurate SSTs add to prediction skill and predictability, albeit in an AGCM prediction setting.

4.2. Forecasted Versus Observed SST Predictions

In contrast to CGCM versus AGCM predictions, forecasted versus observed SSTs in predictions show larger
skill and predictability differences in some regions, where observed SSTs positively and robustly increase skill
and predictability. The use of observed SSTs effectively leads to the assumption that the accurate SSTs cause
more accurate atmospheric response(s) and fluxes (though with possible energetic inconsistencies due to
lack of coupling) and thus more accurate teleconnections. Also, in a prediction setting, because the SSTs
and initial states are in agreement, persistence of initial anomalies is extended which can lead to enhanced
predictability and prediction skill [e.g., Schubert et al., 2007]. To further diagnose why differences in skill and
predictability are large between CAM4_FC and CAM4_OBS, we focus on differences in latent heat flux
climatology and signal variance of atmospheric anomalies.

Large differences in latent heat flux exist between the CAM4_OBS and CAM4_FC simulations, including in the
tropical Pacific and tropical Atlantic where we expect forecasted SSTs to be most skillful and accurate
(Figures 9c and 9d). As atmospheric anomalies are tied to latent heat fluxes, we expect that dissimilarities
in latent heat flux between the two simulations are one of the leading causes in the robust and significant
differences between CAM4_OBS and CAM4_FC skill and predictability. For example, we might expect that
predicted SSTs that are colder (warmer) than observations will lead to less (more) flux of latent heat than what
would be found should observed SSTs be prescribed (or forecasted SSTs be more accurate), leading to differ-
ences in skill. Figures 9c and 9d show that CAM4_OBS has more latent heating than CAM4_FC in much of the
extra-tropical Pacific and tropical Atlantic and less in the equatorial Pacific. These are similar to the regions in
Figure 1 that show biases between observed SSTs and FC SSTs, particularly in the tropical Atlantic.

The tropical Atlantic may influence the tropical Pacific wherein anomalous equatorial Atlantic warming
impacts the circulatory pattern stretching from the Atlantic to the Pacific [Chiang et al., 2000; Rodríguez-
Fonseca et al., 2009; Ding et al., 2012;Martín-Rey et al., 2014; Polo et al., 2015]. This has important implications
for ENSO prediction and predictability, as the Atlantic can influence the amplitude and frequency of ENSO
during certain decades, such as when the AMO is negative [Frauen and Dommenget, 2012; Martín-Rey

Figure 10. Difference in signal variance for DJF (left) and MAM (right). Difference depicted is CAM4_OBS minus CAM4_FC.
Red (blue) shading indicates regions where CAM4_OBS has larger signal variance than CAM4_FC for the given variable.
(a and b) The 500 mb height signal variance is shown and (c and d) latent heat flux.
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et al., 2014]. Moreover, correcting systematic biases in Atlantic SSTs can improve ENSO forecasts due to
remote forcing [Keenlyside et al., 2013]. As climate models have biases in reproducing tropical Atlantic
climate, the large biases seen here are likely impacting the tropical Pacific as well [Sasaki et al., 2014;
Martín-Rey et al., 2015], which in turn could impact teleconnections. Our assumption is that using observed
SSTs will allow for the best possible simulation of fluxes; however, energetic inconsistencies between
CGCM and AGCM simulations, while very weak and related only to noise, still exist within the predictions.

Finally, Figure 10 shows the difference in DJF and MAM 500 mb geopotential height and latent heat flux
unbiased signal variance for CAM4_OBS minus CAM4_FC. Unbiased signal variance is calculated following
methodology from Rowell [1998] and Schubert et al. [2002]. The figure depicts regions in which CAM4_OBS
signal variance is larger than (red shading) or smaller than (blue shading) CAM4_FC signal variance. Here sig-
nal variance represents the “slowly varying” response to sea surface temperatures, etc. Simply stated, if signal
variance is larger in CAM4_OBS, there is more potential predictability of the given variable. Signal variance is
larger in CAM4_OBS for midlatitude 500 mb heights and overall for latent heat flux. Signal variance is mildly
weaker for 500 mb heights outside of the midlatitudes. We also find enhanced signal variance of latent heat
flux over much of the depicted region, indicating that latent heat flux is more predictable in CAM4_OBS
overall. The enhanced signal variance is the likely contributor to increased skill and predictability, as the dyna-
mical quantities impact precipitation and temperature patterns.

We have also calculated estimates of the total variance for SST (not shown) to determine if the increase in
signal variance is due to an overall increase in CAM4_OBS variance (i.e., that both signal and noise variance
are increased). For SST in DJF, the total variance is very similar for both CAM4_OBS and CAM4_FC, with very
few regions where the variance is significantly different. The total variance of CAM4_OBS and CAM4_FC
differs more significantly as lead-time increases, though this is regional, and CAM4_OBS variance is
significantly larger mainly in the tropical Pacific. Thus, the CAM4_OBS total SST variance is not (significantly)
modified in the forecasts at short leads, but there is some regional modification at longer leads. By design,
use of the same SST field in each ensemble member could cause larger (weaker) signal (noise) variance
in CAM4_OBS. However, we believe that the increase in signal variance in regions outside the tropics seen in
Figure 10 is due to more consistent, and possibly better, representation of surface heat fluxes in CAM4_OBS,
which adds to predictability of these variables. As the signal variance is (mainly) larger in CAM4_OBS versus
CAM4_FC, this supports our above conclusions using traditional skill and predictability assessments that use
of observed SSTs causes increased skill and predictability, as the SST errors act to cause errors in dynamical
quantities such as latent heat flux and 500 mb heights.

5. Conclusions

We provide a comparison of fully coupled predictions versus prescribed SST predictions and of forecasted
versus observed SSTs. Our intent is to determine the relative importance of ocean-atmosphere coupling
and SST errors for prediction skill and predictability of precipitation and 2 m temperature. Prediction skill
and predictability are examined through deterministic (anomaly correlation) and probabilistic (RPSS) meth-
ods for precipitation and 2 m temperature. We identify three main conclusions from this work related to
prediction skill and predictability of 2 m temperature and precipitation in CCSM4:

1. Prediction skill (predictability) is not significantly influenced (weakly influenced) by ocean-atmosphere
coupling when the same SSTs are used, except for the western Pacific.

2. Prediction skill and predictability are significantly and robustly influenced by errors in SSTs when compar-
ing simulations with forecasted versus observed SSTs.

3. Comparatively, errors in SSTs lead to more significant and robust differences in prediction skill and
predictability versus inconsistencies in ocean-atmosphere coupling.

These results for CCSM4 largely agree with work in other prediction and idealized settings using various mod-
els [for example, Kumar et al., 2008]. However, it was noted inWu and Kirtman [2007] that the performance of
forced (AGCM) model simulations depends on the local atmosphere-ocean interaction and that poor perfor-
mance is seen when atmospheric forcing of SSTs is dominant, such as in the midlatitudes or in the western
Indo-Pacific region. In a prediction setting, as shown here, the character of ocean-atmosphere coupling is
very similar in forced and coupled predictions for the part of the coupling associated with the signal, which
is the dominant factor in the predictions. The character differs for the part of the coupling associated with
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noise, which is a comparatively weak contributor to skill and predictability. In either case, differences in cou-
pling do not impact skill and weakly impact predictability in select regions, such as the western Pacific and
tropical Atlantic. This indicates that a two-tiered forecast system, in which SSTs are predicted by the fully
coupled model and subsequently prescribed in an AGCM setting, is a possibility for CCSM4, at least for
DJF�MAM. The benefits of using prescribed SSTs rather than FC predictions include potential for additional
ensemble members, experiments using a higher resolution atmosphere model with less computational
demand than a fully coupled hindcast, bias correction of prescribed SSTs, use of enhanced versions of the
atmosphere model such as CAM5, or a combination of these.

Conversely, we do find large and significant differences in skill when using observed (thus perfectly pre-
dicted) SSTs rather than forecasted SSTs for both prediction and predictability, particularly for precipitation.
There are biases in SSTs in various regions, including the tropical Pacific, and while we see a significant
increase in skill and a general increase overall when observed SSTs are used, this does not necessarily match
spatially with the regions of largest bias. However, the reduction of bias when considering observed SSTs may
lead to more realistic teleconnection patterns and thus enhanced prediction skill. The assumption here is that
using observed SSTs would also allow for the best approximation of appropriate surface fluxes. Saravanan
[1998] notes that this assumption can be problematic as benefits are mainly related to specifying tropical
SSTs; however, we find an overall positive increase when observed SSTs are used. While we did not find a
strong difference in ensemble mean ocean-atmosphere coupling in midlatitudes and found only subtle differ-
ences in latent heating when the same SST field is used, we presume that coupling in midlatitudes could lead
to more accurate predicted SSTs, thus more accurate midlatitude forcing, etc. Our methodology to test any
skill or predictability due to differences in SSTs is to prescribe them, and thus the simulations do not have fully
coupled energetics. Nevertheless, we find that there are large differences in signal variance of oceanic latent
heat flux and of large-scale height fields when considering predicted versus observed SSTs, where many
regions show larger signal variance when observed SSTs are used. We also find differences in latent heat flux
climatologies, which likely contribute to errors and lack of skillfulness in the forecasts, as SST errors can cause
errors in latent heat fluxes.

There are some caveats to these results. We focus on the initialization and season(s) that traditionally have
large predictability and skill, not necessarily the warmest ocean, which could affect the results. Midlatitude
forcing has been cited as being a possible contributor to land-based precipitation and 2 m temperature,
but the tropical Pacific forcing may be overwhelming any weak positive or negative contribution to skill
or predictability from the midlatitudes. Because we have focused on the initialization and season(s) with
larger predictability and skill, the nonlinear component of the coupling is small compared to if we were
to consider the spring season, and any shortwave nonlinearities may impact the results in spring [e.g.,
Bellenger et al., 2014]. Ocean model resolution can effect air-sea feedbacks due to differences in coupling
between SSTs and latent heat flux in lower and higher resolution CGCM experiments [Kirtman et al., 2012].
In addition to ocean model resolution, a high-resolution atmosphere model (CAM5) was able to capture a
robust local atmospheric response that was dominated by changes in eddy heat and moisture transports
over the Oyashio Extension SST front [Smirnov et al., 2014]. In the tropical Atlantic, increased ocean model
resolution that is able to resolve oceanic mesoscale variability can lead to smaller biases in the equatorial
cold tongue [Seo et al., 2006]. Atmospheric biases can be transmitted to the ocean and increase biases
there, mainly due to incorrect representation of winds [Voldoire et al., 2014], and increased horizontal
and vertical resolution of an atmospheric model can also lead to substantial improvements in SST biases
[Harlaß et al., 2015]. Finally, we note that SST errors influence skill by comparing forecasted to observed
SSTs. An alternative to this approach is to use the patterns of SST bias as the prescribed SST field in the
AGCM simulations, which may aid in determining the impacts to heat flux, etc. This could be an interesting
direction for future research.

This analysis shows that prescribed SST predictions in CCSM4 are a practical choice for targeted studies for
winter initialized predictions for DJF � MAM. However, we still caution the use of this framework as the
results may not necessarily be generalized to other seasons, initializations, or models. We also find that
SSTs that are more accurate lead to a comparatively large increase in skill and predictability for the predic-
tions, mainly for precipitation. Though not performed here, bias correction of SSTs may be a potential future
direction leading tomore skillful forecasts, keeping in mind the caveat that a coupled systemwith more accu-
rate SSTs may still be the most skillful representation of climate variability.
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